3.6.45 \(\int \frac {1}{(a+b \cosh ^{-1}(c x))^2} \, dx\) [545]

Optimal. Leaf size=90 \[ -\frac {\sqrt {-1+c x} \sqrt {1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c} \]

[Out]

Chi((a+b*arccosh(c*x))/b)*cosh(a/b)/b^2/c-Shi((a+b*arccosh(c*x))/b)*sinh(a/b)/b^2/c-(c*x-1)^(1/2)*(c*x+1)^(1/2
)/b/c/(a+b*arccosh(c*x))

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5880, 5953, 3384, 3379, 3382} \begin {gather*} \frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac {\sqrt {c x-1} \sqrt {c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])^(-2),x]

[Out]

-((Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a + b*ArcCosh[c*x]))) + (Cosh[a/b]*CoshIntegral[(a + b*ArcCosh[c*x])/b]
)/(b^2*c) - (Sinh[a/b]*SinhIntegral[(a + b*ArcCosh[c*x])/b])/(b^2*c)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5880

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*((a + b*ArcCosh[c
*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[c/(b*(n + 1)), Int[x*((a + b*ArcCosh[c*x])^(n + 1)/(Sqrt[1 + c*x]*Sqrt[
-1 + c*x])), x], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5953

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(1/(b*c^(m + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p], Subs
t[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1,
 e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && IGtQ[p + 3/2, 0] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=-\frac {\sqrt {-1+c x} \sqrt {1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac {c \int \frac {x}{\sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )} \, dx}{b}\\ &=-\frac {\sqrt {-1+c x} \sqrt {1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\text {Subst}\left (\int \frac {\cosh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}\\ &=-\frac {\sqrt {-1+c x} \sqrt {1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}\\ &=-\frac {\sqrt {-1+c x} \sqrt {1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 80, normalized size = 0.89 \begin {gather*} \frac {-\frac {b \sqrt {\frac {-1+c x}{1+c x}} (1+c x)}{a+b \cosh ^{-1}(c x)}+\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )-\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])^(-2),x]

[Out]

(-((b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))/(a + b*ArcCosh[c*x])) + Cosh[a/b]*CoshIntegral[a/b + ArcCosh[c*x]]
 - Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]])/(b^2*c)

________________________________________________________________________________________

Maple [A]
time = 4.15, size = 125, normalized size = 1.39

method result size
derivativedivides \(\frac {\frac {-\sqrt {c x -1}\, \sqrt {c x +1}+c x}{2 b \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}-\frac {{\mathrm e}^{\frac {a}{b}} \expIntegral \left (1, \mathrm {arccosh}\left (c x \right )+\frac {a}{b}\right )}{2 b^{2}}-\frac {c x +\sqrt {c x -1}\, \sqrt {c x +1}}{2 b \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}-\frac {{\mathrm e}^{-\frac {a}{b}} \expIntegral \left (1, -\mathrm {arccosh}\left (c x \right )-\frac {a}{b}\right )}{2 b^{2}}}{c}\) \(125\)
default \(\frac {\frac {-\sqrt {c x -1}\, \sqrt {c x +1}+c x}{2 b \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}-\frac {{\mathrm e}^{\frac {a}{b}} \expIntegral \left (1, \mathrm {arccosh}\left (c x \right )+\frac {a}{b}\right )}{2 b^{2}}-\frac {c x +\sqrt {c x -1}\, \sqrt {c x +1}}{2 b \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}-\frac {{\mathrm e}^{-\frac {a}{b}} \expIntegral \left (1, -\mathrm {arccosh}\left (c x \right )-\frac {a}{b}\right )}{2 b^{2}}}{c}\) \(125\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arccosh(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/c*(1/2*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x)/b/(a+b*arccosh(c*x))-1/2/b^2*exp(a/b)*Ei(1,arccosh(c*x)+a/b)-1/2/b
*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(a+b*arccosh(c*x))-1/2/b^2*exp(-a/b)*Ei(1,-arccosh(c*x)-a/b))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-(c^3*x^3 + (c^2*x^2 - 1)*sqrt(c*x + 1)*sqrt(c*x - 1) - c*x)/(a*b*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*a*b*c^
2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x - b^2*c)*log(c*x + sqrt(c*x + 1)*sqrt(c*x -
 1))) + integrate((c^4*x^4 - 2*c^2*x^2 + (c^2*x^2 + 1)*(c*x + 1)*(c*x - 1) + (2*c^3*x^3 - c*x)*sqrt(c*x + 1)*s
qrt(c*x - 1) + 1)/(a*b*c^4*x^4 + (c*x + 1)*(c*x - 1)*a*b*c^2*x^2 - 2*a*b*c^2*x^2 + 2*(a*b*c^3*x^3 - a*b*c*x)*s
qrt(c*x + 1)*sqrt(c*x - 1) + a*b + (b^2*c^4*x^4 + (c*x + 1)*(c*x - 1)*b^2*c^2*x^2 - 2*b^2*c^2*x^2 + 2*(b^2*c^3
*x^3 - b^2*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + b^2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*acosh(c*x))**2,x)

[Out]

Integral((a + b*acosh(c*x))**(-2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^(-2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*acosh(c*x))^2,x)

[Out]

int(1/(a + b*acosh(c*x))^2, x)

________________________________________________________________________________________